Doubling times, growth rates, and forecasts

A lot of people who are playing with the numbers for COVID19 and coming up with huge death tolls, in the millions or even billions, are missing some key aspects of how infectious diseases and population growth works. Here is a bit more about the dark art of predicting how many people will fall ill from something like this.

The exponential growth phase of any predator (the SARS-COV-2 virus) moving into a new environment is limited by the food source in terms of both the raw supply and behavior of that food supply (the food supply, in this case, is us).  If you want to learn more about that, here is a nice article that describes how this works.  The bottom line is that the period of time of exponential growth for a virus is limited both in terms of the total population, immunity (either existing or developed) in that population, and changes in the behavior of that population (for humans, things like “social distancing”).  So the “curve” always ends up being “S” shaped following what is called a logistic function or logistic curve. At some point, the thing just runs out of food …

In modeling viral outbreaks, the simplest models just try to figure out the three parameters that describe that curve (the midpoint, the peak rate or shape, and the maximum).  In the early days of the outbreak, you can collect data such as mortality, and “fit” that data to the curve to try to estimate the ultimate variable of interest, usually the end total population mortality.  More advanced models simulate things like transportation networks,  interaction between people, infection rates, development of immunity, etc.  These kinds of models are really useful to figure out what is the most effective way of dealing with an outbreak.  But the neat thing is that these advanced models usually end up generating a logistic curve.  There are theoretical reasons why this works that I won’t bore you with here (sort of like how the central limit theorem and probability bell curves work).

If we look at the data as of this morning (30 March 2020), we can fit the various data sets to logistic functions and see what the future might hold, and how things are progressing in various locations.  One of my real pet peeves is when people put raw numbers on a graph that are not “normalized” for population.  For example, even though a US State is similar in geography and size to a European country, comparing New York (19.5 million people) and Italy (over 60 million) to Georgia (10 Million) directly doesn’t work unless you scale it for the population.  The most common way of doing that is in deaths per 10,000 people.  That way you can compare them more directly.  I’m not showing the “whole US” numbers, because the US is a very disparate place, with multiple “epicenters”.

Here I’m running a simple model on Italy and Spain, as they are far enough along to see how things are going, and comparing to US States.   Here’s today’s plot of the data (points), with several projections (lines).  As always, click to embiggen:

The solid black line is based on data from around the world as of the first week of March.  At that point, we had the China data, but didn’t really trust all of it.  We also had limited data from the Diamond Princess.  The solid light grey line is a line derived from the H3N2 outbreak in 2017, but assumes the day of maximum rate occurred 5 times sooner (in other words, the progression of the outbreak happened five times faster).  This line is interesting since it provides context in terms of the final outcome, but also to reinforce the fact that COVID19 is dangerous because it moves so fast.  Of course now we have nearly 20 days more data, and Italy and Spain are much further “down the curve.”  If we fit these lines, we end up with two additional estimates of our three parameters.  The end point for Italy would seem to be about 2.9 deaths per 10,000 people.  For Spain, it is on track to be higher, 3.1 per 10,000.  Spain may be a bit high, due to two separate “epicenters” of their outbreak, but let’s stick with what the data says as a boundary.  For reference, the end mortality rate for the unvaccinated population of H3N2 was 2.96 per 10,000.  Netherlands and France are along similar tracks.  Elsewhere, I think we can say that China and Iran are not really reasonable.  South Korea is a special case – fast action, prepared health care system.

As you can see from the US state points, we’ve got a variety of things going on.  Washington State, after being the initial epicenter, has done well in limiting the spread.  NOLA scared everyone but is now below the projections – but I suspect that is a reporting artifact and will “jump” back up to the rest of the pack.  NY and NJ are right on track.  I’m having a really hard time believing the Georgia reports.   I suspect munging.

So what does that mean for the US?  The US is a big place with weeks separating the exposure times across the country.  Some areas will be hit harder than others based on urbanization, how soon and how proactive the measures were taken, how patient folks are in sticking with them.  Here are the end values using each of these four estimates, along with an estimate from a complex biological warfare model:

  • Early March COVID Model: 72,820
  • H3N2 Analog: 97,976
  • Italy Curve: 95,990
  • Spain Curve: 102,610
  • TAOS(tm) Eir: 133,215

Dr. Anthony Fauci on CNN’s “State of the Union” Sunday talked a bit about this and CDC’s  internal models:

Whenever the models come in, they give a worst-case scenario and a best-case scenario. Generally, the reality is somewhere in the middle. I’ve never seen a model of the diseases that I’ve dealt with where the worst case actually came out … They always overshoot. I mean, looking at what we’re seeing now, you know, I would say between 100 and 200,000 (deaths).  But I don’t want to be held to that.

All I can say is I’m with Dr. Fauci: I don’t want to be held to any of this either 😛

What does all this mean to you personally?  To repeat: take this seriously, follow the CDC guidelines, limit interactions outside your immediate household (aka social distancing), keep strict hygiene protocols, and otherwise do everything you can to try to slow down the rate of spread. It’s more than likely not about you. It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.  Don’t focus on the numbers, just take care of yourself, your family, and your neighbors, and in three or four weeks the worst should be over.

Don’t be scared by the numbers or media terms like “skyrocketing” and the heartbreaking individual stories.  As you can see from the curves, that’s a natural part of the process.  I understand the sensitivity around comparing COVID to influenza because it is moving so much faster, but as horrible as this is going to get for our health care professionals, the “good” news is from a whole population mortality rate it’s not all that different. The 2017 flu season probably killed 61,000 (1.87/10,000 whole pop, 2.96/10k unvaccinated).  In the late 1990s, several years had rates well above 3/10k (1998 was 3.46, or with today’s population, 115 thousand deaths).  As I have said, it’s not that we are taking COVID19 too seriously, it’s we don’t take influenza seriously enough most of the time.

Brief update and correction

First, a correction.  On the previous graphs and notes the “Y” (vertical) axis was mislabeled as deaths per 1000 population; it should have been per 10,000.  Just a typo on the labels (and using copypasta too much), the data itself and plots were OK.  Here is the chart for this morning (29 March) with the correct label, and the points a bit larger and hopefully clearer:

I again want to caution everyone about getting too worked up over daily wobbles in the numbers.  First of all, the systems that compile this data are really overworked.  Italy, for example, has some known delays in accounting so that when a death is registered may be some time after it actually occurred.  As previously discussed “cases” are a terrible metric because they depend on the availability of testing as well as the “case” being severe enough for someone to bother to test it. And it takes on average at least three weeks for the impact of measures like “social distancing” to show up in mortality data; this chart is a look back at what was going three, even four weeks ago (because of the time it takes for someone exposed to get sick and pass away).  So while like everyone I’m nervous about Italy and Spain not starting to trend lower, I’m not worried about it (yet).  If they go above 2.5 and still trending rapidly up, that’s not a good sign.  But as you can see, there’s a long way to go before that happens.

I’m not showing a total US plot for several reasons.  First, countries like Italy and Spain (as wells as Hubei province, China) are in population about the size and area of our states.  Second, areas larger than states have multiple “start times” and and the curves are so messy it’s hard to see what is going on.  Will check back in a few days to see where things are going …

The Song Remains The Same …

Nothing much has changed since Wednesday.  Here is the same plot I ran the 25th, updated with three more days of data. The black line is a theoretical curve that represents a generic model of how COVID19 mortality should behave. The grey line is the 2017 H3N2 flu progression sped up by a factor of 5 for comparison purposes (in other words, the 24 weeks of the heart of the normal flu season compressed into 4-5 weeks). The dots represent actual data as of the totals as reported this morning. I added a few more regions like France and the states of Georgia and Louisiana, as well as South Korea. Click to embiggen …

Of these, China (grey +) and Iran (grey o) look weird. I suspect those numbers are “munged.” But Spain (red dots) and Italy (green dots), which are the farthest along of societies that might resemble the US, seem to be following the expected progression. South Korea is a clear outlier, but they jumped on this very early, have a very aggressive testing and containment approach, and have FOUR TIMES more hospital beds than the US.  New York is the cyan triangles that are hard to see because it’s just starting to creep along the curve – about day 30 or so, as is Louisiana. The next 20 days will be very scary – you can see that is the steepest part of the curve, and people will talk about doubling times, and extrapolation the daily rates far beyond the point where they will start to settle down.  But the curve will almost certainty, and quickly, stabilize.

Where will it end? Not too different from the mid-week estimates.  The latest projections are that the US will see between 50 and 80 thousand deaths. That sounds like  lot, but the 2017 influenza season saw 61 thousand H3N2 influenza deaths, albeit over 6 months, not 6 weeks!. New York will likely see upwards of 5 thousand (currently 200 or so). Smaller communities will also see a rapid rise in deaths that, without context, will seem terrifying. Expect the health care system to be in crisis, and please do what you can to support the medical community. This will be horrific for them – even if the risk for you personally is low if you do not have pre-existing health problems. Chatham County, Georgia hospitals, which serve about 400,000 people, will likely see nearly 1,000 respiratory cases, of which 100 may die, all in the next three weeks. But again, by the end of April, most parts of the country should be at the upper end of the curve, with the deaths per day decreasing.

How soon will we know if that really is our future, or something worse? Italy should be passing their peak number of deaths per day. I expect that by early next week we will see a downward trend in their numbers, followed by Spain 4-5 days later. If by the 1st of April Italy is still recording 700 or more per day, that will be a source of concern.

Short Version: yes, the numbers without context are scary.  The media is shifting attention from one “center” (like NYC) to another (NOLA) depending on which gives the bigger headline.  It is obscene. The big picture is nothing has changed.  Take this pandemic seriously but not to panic, following the CDC guidelines, limit interactions outside your immediate household (aka social distancing), keep strict hygiene protocols, and otherwise doing everything you can to try to slow down the rate of spread. It’s more than likely not about you. It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.

And STOP focusing on the “death race” numbers.  It’s just not healthy.  Check the news maybe once a day to see if local guidance has changed, and otherwise take care of yourself and your family.  PS – don’t binge watch ST:Picard, even Sir Patrick couldn’t save it 😛

Spirit, Speak Comfort To Me!

OK, before someone gets upset I’m not taking the current crisis seriously, don’t misunderstand: this is a serious situation. But there is no cause to lose our sense of humor or be grim. Yes, we must take action, but no, it’s not the end of the world (unless you’re a nurse or doctor, then it might feel like it for a couple of weeks).  I’ll crunch the numbers downthread and it’s not as bad as you might think if you keep perspective.  But do not doubt the sad fact that the US health care system can’t really keep up with a normal flu season; there is no way it can handle a rapid influx of respiratory patients. That is why COVID19 is so dangerous, and why everyone needs to take it seriously, following the CDC guidelines, limit interactions outside your immediate household (aka social distancing), keep strict hygiene protocols, and otherwise doing everything you can to try to slow down the rate of spread. It’s more than likely not about you. It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.

Here’s the latest analysis.  First, please, please, please, stop obsessing on every blip in the numbers!  They are not “skyrocketing” or whatever inflammatory phrase the media is using at the moment. Second, the absolute numbers don’t matter.  Yes, each and every one is a life, and a tragedy.  But what matters in terms of risk is the denominator: how many people are getting sick and passing away in terms of what size group?  Losing 100 people in Chatham County (pop about 290,000) is very different from losing 100 people in New York City (pop 8.6 million).  Don’t compare them.  It’s mortality per unit population that matters – and how fast that mortality happens.  Please stop feeding the beast by quoting and hyping how many deaths per day without context.  It’s not helpful, and causing people far more stress than is appropriate.

Time for some math: deaths from the virus are progressing along what is known as a logistic function.  This type of function was originally developed for use in population growth, but has found it’s way in to many other fields.  In biology, this is sometimes called a carrying capacity curve.  We are entering the scary part of that curve.  Here’s what the curve looks like with data for several areas as of 24 March 2020.  The black line is a theoretical curve that represents an estimate of how things might progress.  The grey line is for comparison, the 2017 H3N2 flu progression speeded up by a factor of 5.  The dots represent actual data as of the totals for yesterday as reported this morning.  Click to embiggen …

 

Of these, China (grey +) and Iran (blue o)  look weird.  I suspect those numbers are “munged.”  But Spain (red dots) and Italy (green dots), which are the farthest along of societies that might resemble the US, seem ok.  (South Korea is even further down the curve, but they took very early intervention, and have more hospital surge capacity than the US, so may not be a good analog).  New York is the cyan triangles that are hard to see because  it’s just starting to creep along the curve – about day 25 or so.  The next 20 days will be very scary – you can see that is the steepest part of the curve, and people will talk about doubling times, and extrapolation the daily rates far beyond the point where they will start to  settle down.

Where will it end?  The latest projections are that the US will see between 50 and 90 thousand deaths.  (2017 saw 61 thousand H3N2 influenza deaths – but over 6 months, not 6 weeks!).  New York will likely see upwards of 5 thousand (currently 200 or so).  Smaller communities will also see a rapid rise in deaths that, without context, will seem terrifying. Expect the health care system to be in crisis, and please do what you can to support the medical community.  This will be horrific for them.  Chatham County, Georgia hospitals, which serve about 400,000 people, will likely see nearly 1,000 respiratory cases, of which 100 may die, all in the next three weeks.  But again, by the end of April, most parts of the country should be at the upper end of the curve, with the deaths per day decreasing.

How soon will we know if that is our future, or something worse?  Italy should be at near their peak.  I expect that by early next week we will see a downward trend in their numbers, followed by Spain 4-5 days later.  If by the 1st of April Italy is still recording 700 or more per day, that will be a source of concern.  Will update the graph this weekend … meanwhile, don’t hoard TP like this guy.

How bad is Italy (ok, one more COVID post this week).

As of the final totals from yesterday, 22 March 2020, there have been 5476 deaths from SARS-COV-2 in Italy. To put that in perspective, in the 2013/14 influenza season, there were 7027 excess deaths due to influenza recorded. In 2014/15, a  20,259 deaths were attributed to that outbreak, while in the worse recent year, 2016/17, 24,981 died from influenza. (from Rosano et al, Int. J. Infections Diseases, Vol 88, Nov 2019, pp 127-134).

Yes, COVID19 is different in how fast cases are coming, but not in whole population mortality. The speed of progression seems to be about 4 and 6 times that of influenza, and that is producing a HUGE strain on the system. But the outcomes have yet to approach a bad influenza outbreak. The present rate of the last three days of 690/day will have to continue for another 28 days to reach the 2016/17 flu season toll. I’d be very surprised if the rates don’t start to drop soon. If they haven’t dropped in Italy in two weeks, maybe then it’s time to worry, but for now, things seem on track for this to be a “flu season in 6 weeks” virus. Catastrophic for the health care system, but not a big deal in whole population terms. In economic terms, that’s a whole different question …

To repeat from yesterday: The US health care system can’t really keep up with a normal flu season; there is no way it can handle a rapid influx. That is why COVID19 is so dangerous, and why everyone needs to take it seriously, following the CDC guidelines, exercising social distancing and hygiene protocols, and otherwise doing everything you can to try to slow down the rate of spread. It’s more than likely not about you. It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.  Fixating on every up or down tick in the numbers, and chasing down every wild number or wild theory making the rounds is just not sensible or conducive to sanity.  My advice is to be careful, keep watch over those around you, take advantage of the time off as you can, check the news maybe once a day to see if anything has really changed as to what you should do, but don’t drive yourself crazy hitting refresh; this is a slow motion disaster. April will be the cruelest month – but by the last week things should be looking up.

What a fashionable Italian Cat might look like.

One last look at early COVID19 stats

A major frustration with how the COVID19 cases and deaths are being presented is that they are without context.  Raw case or death numbers, or mortality rates based off of them, just aren’t useful.  Lets take a closer look at the State of New York, since we are starting to get some data there.  Sorry, there will be math.

Nobody likes to think about death. The fact is people die every day from a variety of causes. Death is part of life.  Where diseases or accidents are concerned, what we worry about is “excess mortality” – in other words, how many people die that, all things equal, probably shouldn’t have?  Death rates change during the year – higher in winter, lower in summer. Daily rates are very “noisy”, so it’s probably best to use weekly aggregations.  For weeks 10 and 11 (mid March, where we are now), between 2015 and 2019 there were between 2000 and 2300 deaths per week in week 11 in New York (about half in the City).  Pneumonia and influenza –  “P&I” deaths – are the cause in about 10% of those cases this time of year, or ~190 per week.  

So, this week we will probably see 60-70 deaths from COVID19 in New York (60 as of this morning).  That’s significant – but in perspective, only a 3% or so increase in average mortality.  Assuming the rates are hitting the steep part of the curve, we can probably expect to see on the order of 350 a week for the peak week, or 15% higher than a “bad” influenza week, and that rate sustained over a couple of scary weeks until it drops.  The media will go berserk – and the strain on hospitals and health care workers will be horrific – but the big picture is that, for the major of people, it’s not a catastrophe.  You can do a similar exercise on the Italy numbers.  Yes, they are scary.  And not to take away from the individual tragedies of each death, or the toll on the health care system, the increases we are seeing in overall population mortality are not catastrophic in whole population terms.  If we start to see the numbers go above 500 in a week in New York, or the rates stay above 300 for more than three or four weeks, there may be something else going on.

For what it’s worth, my viewpoint hasn’t really changed:  We are just entering the steep part of the curve.  It will be very scary as cases numbers seem to jump up from day to day – but keep it all in context.  If these trends hold, the US can expect about 30 to 35 million people to be “symptomatic” (most mild, and given the testing problem, many will never know it), 400,000 to 600,000 need hospitalization, and 35-60 thousand deaths.  The economic damage from this is going to be far greater than I anticipated a month ago ($85 Billion), largely because I overestimated the advance planning being done by western governments (who screwed this up big time), and therefore underestimated the overall reaction later.  I think we’re in for a rough ride this year – probably on the order of 10 times that in direct impacts, or $850 Billion to a Trillion (!) dollars (out of a roughly $20 Trillion economy).  Some of that are “paper” losses, but for small businesses I fear it will be all too real and many won’t make it.

As noted before, for perspective compare to the 2017 influenza season: 45 million symptomatic, 810,000 hospitalized, 61,000 died, probably in the ball park of $80 Billion in economic impacts.  HOWEVER, rather than coming over 20 weeks or so, the bulk of the COVID19 cases will come over maybe 4 weeks -five times faster.  The US health care system can’t really keep up with a normal flu season; there is no way it can handle this influx.  That is why COVID19 is so dangerous, and why everyone needs to take it seriously, following the CDC guidelines, exercising social distancing and hygiene protocols, and otherwise doing everything you can to try to slow down the spread.  It’s more than likely not about you.  It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.

At this point, there are way too many people doing way too much speculation based on way too little accurate data.  I don’t want to contribute to that.  Fixating on every up or down tick in the numbers, and chasing down every wild number or wild theory making the rounds is just not sensible or conducive to sanity.  So unless something drastic changes, and it’s relevant to my areas of research, this will be my last COVID19 post for a while.   My advice is to be careful, keep watch over those around you, take advantage of the time off as you can, check the news maybe once a day to see if anything has really changed as to what you should do, but don’t drive yourself crazy hitting refresh; this is a slow motion disaster.  April will be the cruelest month – but by the last week things should be looking up.

COVID19 vs Influenza: why it’s worse, why it’s not.

OOPS: these are per 10,000, not 1000.  

You’re seeing lots of graphs and tables on COVID 19.  In a disgusting display of fear mongering, networks are now keeping running counts of the cases and deaths on screen as if tracking stocks or something.  But all of that lacks context.  How does COVID19 compare with a bad influenza outbreak? We’re starting to get enough data to seriously answer that question. I’m using the 2017 H3N2 outbreak for reference, which was a bit worse than an average season, and the data from three areas that are relatively farther along in the process: Hubei, China, Daegu, ROK, and Lobmardy, Italy.  Influenza is in blue; Hubei is orange, Daegu yellow, and Italy in green.  We start the clock on our graphs at the first known case and plot cases per 10,000 population by week:

Oh.  That’s not very interesting.  The COVID19 cases barely show up!  What is going on?  Well, to start with, we are probably only detecting/reporting a fraction of cases.  Lets scale H3N2 flu to assume we are only detecting 5% of COVID-19 cases (which seems to be the range in the literature at the moment):

That’s a lot more interesting – and really illustrates how COVID19 is both different from and more stressful for the health care system, and not as bad for the general population, as influenza.  Notice how rapidly the cases explode for COVID19.  This is why the outbreak is so stressful for hospitals: the cases flood in over 3-4 weeks, as opposed to 20 weeks for a flu outbreak.

There is a lot to learn from these numbers and graphs.  Notice the sharp break in the Hubei China curve.  There are likely two reasons for that. First, they instituted rather draconian travel restrictions.  Second, they are likely not being entirely honest about their reporting, either internally or externally.  From the Korea curve. which is probably pretty reliable, it looks like COVID19 cases will level off between 1.5 and 2 cases per 10000.  H3N2 leveled off at over 60 per thousand, but if we scale it to the same detection rate we suspect we are seeing for COVID19, then 3 to 3.5 is the range, and therefore COVID will have maybe 2/3 the impact of a bad flu season in terms of total number of cases, and mortality.  Italy is in the steep part of the curve.  We should see their case rate slow over the next week and level off, probably in the 2.0 to 3.0 /10,000 range (a bit higher than Korea due to the older population and later implementation of control measures).

What about the US?  We are just entering the steep part of the curve.  It will be very scary as cases explode – but keep it all in context.  If these trends hold, the US can expect about 30 to 35 million people to be “symptomatic” (most mild), 400,000 to 500,000 need hospitalization, and 30-40 thousand deaths.  Compare to the 2017 influenza season: 45 million symptomatic, 810,000 hospitalized, 61,000 died.  HOWEVER, rather than coming over 20 weeks or so, those cases will come over maybe 4 weeks -five times faster.  The US health care system can’t really keep up with a normal flu season; there is no way it can handle this flood.  That is why COVID19 is so dangerous, and why everyone needs to take this seriously, following the CDC guidelines, exercising social distancing and hygiene protocols, and otherwise doing everything you can to try to slow down the spread.  It’s more than likely not about you.  It’s about that 1% of so of the population who will get very sick, and may not get enough care because the system will be overloaded.  The state of the US system is a disgrace, and its inability to handle this outbreak is the result of health care policy decisions going back decades.  That will likely be the subject of an upcoming vehement rant …


Data sources:
Influenza Hospitalization Surveillance Network (FluSurv-NET), US Centers for Disease Control.
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE

The difference between data and information (19 March COVID Notes)

When looking at articles about any subject, but especially science topics, you have to appreciate the difference between data and information.  For example, people are freaking out about articles like this one that are saying the SARS-COV-2 virus (the beast that causes COVID19) can survive “for hours or days” in the air or on surfaces.  That is “data”.  But what does in mean to you, practically?  How is this different from other virus like influenza? That would be information. So let’s convert that data point into information …

To start with, let’s be clear it doesn’t mean anything different from the standpoint of guidelines:  your best bet as to what to do is  the CDC COVID-19 web site. For other preparation tips, try the DHS/FEMA site. By now you should know the drill: wash your hands, don’t touch your face, social distancing, just stay home and isolate if you don’t feel good. Help those around you as needed.

OK, so SARS-COV-2 can survive in airborne droplets for a few hours, and on surfaces for a few days in a controlled environment.  How is that different from the cold or flu?  Well … it isn’t.  The influenza virus can remain infectious for several days on things like doorknobs. The viruses that cause the common cold (and recall 20% of them are in the coronavirus family) can be viable for over a week, even longer.  To quote from NIH (who funded the study):

The findings affirm the guidance from public health professionals to use precautions similar to those for influenza and other respiratory viruses to prevent the spread of SARS-CoV-2 …

These kinds of studies are important for practitioners to assess the guidelines and see if anything needs to be changed. However, reporters have a responsibility to put that data into context so it becomes information.  Sadly, they often don’t, or do it “below the fold” so they grab the attention of readers (ZOMG! Its Lives!) but people don’t see the context (oh, it’s just like other viruses).

In summary, for cold and flu and, now, COVID19 season, just follow Sgt Apone’s advice and you’ll be ok …

Not enough crayons …

Between the sheer magnitude of the misreporting going on in the major news media, and the monumental incompetence and feckless positioning to take advantage or avoid blame for the COVID19 crisis among US political leaders, it’s hard to know where to start.  The second biggest thing that bugs me is the assumption that people are stupid and have to be manipulated.  The biggest thing that bugs me is that the people doing the manipulating (media, leaders) think they are knowledgeable and smart enough to know what is best and that manipulation is required.  So for today a “short” post pointing out one small element of the madness.

Imperial College, London, released a report on modeling the potential impact of the virus.  It’s an interesting study, properly interpreted it’s good, valuable work.  But that’s certainly not what is happening.  One example is the New York Times article on the study.  They plucked out a graphic showing 2.2 Million US deaths, labeling it in the fine print as showing the number of deaths “in the absence of actions.”  What they don’t say is what the report itself said: that this scenario was unlikely.  That upper bound assumes that people would do nothing even as others around them fell sick.  Worse, this scenario is now in fact impossible: actions already taken will have a profound reduction on this total, even if the assumptions in the model (which are very bad case assumptions) are correct.  There are also reasons to believe that many of the assumptions in the paper are extreme, based on data that has become available later – this is a rapidly moving situation, and it is hard for peer reviewed research to keep up.  But it is valuable document showing the potential impact of various mitigation actions.

 

As I have ranted previously, there are always a huge range and variation of scenarios for any disaster.  Which scenario you use for a given purpose varies depending on the application.  There is no “right” number.  But there are a lot of wrong numbers, especially for what is most likely to happen.  I think most people understand that you sometimes have to plan and take action based on what could happen, even if though what is likely to happen is something more benign.  The problem is, by always emphasizing what might happen (much less the most extreme version of that) just causes a lot of fear, anxiety, and panic.  I just don’t buy it you have to scare people: most people, most of the time, will do the right thing if you just take the time to explain it to them.

As I have been saying all along, your best bet as to what to do is still the CDC COVID-19 web site.  For other preparation tips, try the DHS/FEMA site.  By now you should know the drill: wash your hands, don’t touch your face, social distancing as needed, stay home if you don’t feel good.  Help those around you as needed.  And try not to stress too much over the numbers, the drama, and the politics.  Most of the numbers (and the rhetorical extremes) are bogus anyway.

The Worst Case Scenario (15 March 2020)

OK, here it is: SARS-COV2 continues to mutate and the mortality rate increases for younger demographics, with the whole population mortality exceeding 10%.  The economic spiral rapidly accelerates into a financial system collapse, and a global depression results.  As social unrest spreads, various state and non-state actors seek to exploit the situation, and a peer-on-peer nuclear exchange is ultimately triggered.  The surviving fraction of humanity is reduced to a mad-max style existence. This is not a joke or exaggeration, this is what some of the models and associated analyses are currently forecasting as our near term future.  However …

Mad Max Fury Road promo shot. Or Abercorn Street in Savannah on word that WalMart has toilet paper. Could go either way.

Continue reading